解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向”问题.例如,原问题是“长方形的长和宽的长分别是3和4,求长方形的周长”,求出周长等于14后,它的一个“逆向”问题可以是“若长方形的周长为14,且一边长为3,求另一边的长”;也可以是“若长方形的周长为14,求长方形面积的最大值”,等等.
(1)设,
,求A与B的积;
(2)提出(1)的一个“逆向”问题,并解答这个问题.
林老师骑摩托车到加油站加油,发现每个加油器上都有三个量,其中一个表示“元/升”其数值固定不变的,另外两个量分别表示“数量”、“金额”,数值一直在变化,这里什么是变量,什么是常量?
说出下列各个过程中的变量与常量:
(1)我国第一颗人造地球卫星绕地球一周需106分钟,t分钟内卫星绕地球的周数为N,N=;
(2)铁的质量m(g)与体积V(cm3)之间有关系式;
(3)矩形的长为2cm,它的面积为S(m2)与宽a(cm)的关系式是S=2a.
等腰三角形的顶角为y,底角为x.
(1)用含x的式子表示y;
(2)指出(1)中式子里的常量与变量.
某车间有工人20名.已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元。在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件.
(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;
(2)要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适?
小强在劳动技术课中要制作一个周长为80cm的等腰三角形.请你写出底边长y(cm)与一腰长x(cm)的函数关系式,并求出自变量的取值范围.