如图,点P是直线:
上的点,过点P的另一条直线
交抛物线
于A、B两点.
(1)若直线的解析式为
,求A、B两点的坐标;
(2)①若点P的坐标为(-2,),当PA=AB时,请直接写出点A的坐标;
②试证明:对于直线上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.
(3)设直线交
轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.
如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;
(2)当∠BAC=90°时,求证:四边形ADCE是菱形;
甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:
命中环数 |
7 |
8 |
9 |
10 |
甲命中环数的次数 |
2 |
2 |
0 |
1 |
乙命中环数的次 |
1 |
3 |
1 |
0 |
若从甲、乙两人射击成绩方差的角度评价两人的射击水平,则谁的射击成绩更稳定些?
某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?
(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?
探索规律:观察下面由※组成的图案和算式,并解答问题(
)试猜想
;
(
)试猜想
=;
(
)请用上述规律计算:
(请算出最后数值哦!)