游客
题文

已知椭圆E:的离心率为,右焦点为F,且椭圆E上的点到点F距离的最小值为2.
(1)求椭圆E的方程;
(2)设椭圆E的左、右顶点分别为A,B,过点A的直线l与椭圆E及直线x=8分别相交于点M,N.
(ⅰ)当过A,F,N三点的圆半径最小时,求这个圆的方程;
(ⅱ)若,求△ABM的面积.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知函数,其中.
(1)当时,求曲线在点处的切线方程;
(2)讨论函数的单调性.

已知,且,求证:.

已知定义在正实数集上的函数,其中.设两曲线有公共点,且在该点处的切线相同.
(1)用表示,并求的最大值;
(2)判断当时,的大小,并证明.

(Ⅰ)小问5分,(Ⅱ)小问7分)
安排四个大学生到A、B、C三个学校支教,设每个大学生去任何一个学校是等可能的.
(1)求四个大学生中恰有两人去A校支教的概率.
(2)设有大学生去支教的学校的个数为,求的分布列.

探究:是否存在常数abc使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c)
对对一切正自然数n均成立,若存在求出abc,并证明;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号