设函数,其中
为常数.
(Ⅰ)当时,判断函数
在定义域上的单调性;
(Ⅱ)当时,求
的极值点并判断是极大值还是极小值;
(Ⅲ)求证对任意不小于3的正整数,不等式
都成立.
如图,在三棱锥中,
平面
,
.
(Ⅰ)求证:;
(Ⅱ)设分别为
的中点,点
为△
内一点,且满足
,
求证:∥面
;
(Ⅲ)若,
,求二面角
的余弦值.
甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:
(Ⅰ)请画出甲、乙两人成绩的茎叶图. 你认为选派谁参赛更好?说明理由(不用计算);
(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为,求随机变量
的分布列和期望
.
已知函数.
(Ⅰ)求函数的最小值;
(Ⅱ)若,求
的值.
已知函数,其中
是自然对数的底数.
(1)求函数的零点;
(2)若对任意均有两个极值点,一个在区间
内,另一个在区间
外,
求的取值范围;
(3)已知且函数
在
上是单调函数,探究函数
的单调性.
在平面直角坐标系中,已知点及直线
,曲线
是满足下列两个条件的动点
的轨迹:①
其中
是
到直线
的距离;②
(1) 求曲线的方程;
(2) 若存在直线与曲线
、椭圆
均相切于同一点,求椭圆
离心率
的取值范围.