某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
下表是关于某设备的使用年限(年)和所需要的维修费用(万元)的几组统计数据:
![]() |
2 |
3 |
4 |
5 |
6 |
![]() |
2.2 |
3.8 |
5.5 |
6.5 |
7.0 |
(1)请在给出的坐标系中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程
;
(3)估计使用年限为10年时,维修费用为多少?
(参考数值或公式
如图所示,圆的直径
,
为圆周上一点,
.过
作圆的切线
,过
作
的垂线
,
分别与直线
、圆交于点
,求∠DAC和线段
的长
某班主任对班级22名学生进行了作业量多少的调查,数据如下表:在喜欢玩电脑游戏的12中,有9人认为作业多,3人认为作业不多;在不喜欢玩电脑游戏的10人中,有4人认为作业多,6人认为作业不多.
(1)根据以上数据建立一个列联表;
(2)试问喜欢电脑游戏与认为作业多少是否有关系?
(可能用到的公式:,
,可能用到数据:
,
,
,
.)
(本小题满分14分)
已知函数为自然对数的底数)
(1)求的单调区间,若
有最值,请求出最值;
(2)是否存在正常数,使
的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出
的值,以及公共点坐标和公切线方程;若不存在,请说明理由.
(本小题满分14分)
已知椭圆C的中心在坐标原点,焦点在x轴上,它的一个顶点恰好是抛物线
(1) 求椭圆C的标准方程;
(2)过椭圆C的右焦点F作直线l交椭圆C于A、B两点,交y轴于M点,若求
的值.