已知甲、乙、丙等6人 .
(1)这6人同时参加一项活动,必须有人去,去几人自行决定,共有多少种不同的去法?
(2)这6人同时参加6项不同的活动,每项活动限1人参加,其中甲不参加第一项活动,乙不参加第三项活动,共有多少种不同的安排方法?
(3)这6人同时参加4项不同的活动,求每项活动至少有1人参加的概率.
某市为了考核甲,乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:
(1)分别估计该市的市民对甲,乙两部门评分的中位数;
(2)分别估计该市的市民对甲,乙两部门的评分高于90的概率;
(3)根据茎叶图分析该市的市民对甲,乙两部门的评价.
设命题;命题
,若
是
的必要而不充分条件,求实数
的取值范围.
命题:方程
有两个不等的实根,命题
:方程
无实根.若“
或
”为真命题,“
且
”为假命题,求
的取值范围.
已知过点的直线
交抛物线
于
两点,直线
交
轴于点
.
(1)设直线的斜率分别为
,求
的值;
(2)点为抛物线
上异于
的任意一点,直线
交直线
于
两点,
,求抛物线
的方程.
已知椭圆的离心率是
.
(1)若点在椭圆上,求椭圆的方程;
(2)若存在过点的直线
,使点
关于直线
的对称点在椭圆上,求椭圆的焦距的取值范围.