考察某种药物预防甲型H1N1流感的效果,进行动物试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本.
(Ⅰ)根据所给样本数据完成下面2×2列联表;
(Ⅱ)请问能有多大把握认为药物有效?
|
不得流感 |
得流感 |
总计 |
服药 |
|
|
|
不服药 |
|
|
|
总计 |
|
|
|
(参考数据:)
某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如表.
优秀 |
非优秀 |
总计 |
|
课改班 |
50 |
||
非课改班 |
20 |
110 |
|
合计 |
210 |
(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改有关”;
(2)把全部210人进行编号,从编号中有放回抽取4次,每次抽取1个,记被抽取的4人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望Eξ.
已知两个正数a,b满足a+b=1
(1)求证:;
(2)若不等式对任意正数a,b都成立,求实数x的取值范围.
已知直线:
(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为
.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为,直线l与曲线C的交点为A,B,求|MA|•|MB|的值.
已知二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3
(1)求n的值;
(2)求展开式中项的系数
(3)计算式子的值.
如图,在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于点A(-1,0)、B (3,0)两点,直线y=x-2与x轴交于点D.与y轴交于点C.点P是x轴下方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.
(1)求抛物线的解析式;
(2)若PE=3EF,求m的值.