函数,过曲线
上的点P
的切线方程为
(1)若在
时有极值,求
的表达式;
(2)在(1)的条件下,求在[-3,1]上的最大值;
(3)若函数在区间[-2,1]上单调递增,求实数b的取值范围.
已知是奇函数,且其图象经过点(1,3)和(2,3)。
(1)求的表达式;
(2)用单调性的定义证明:在
上是减函数;
(3)在
上是增函数还是减函数?(只需写出结论,不需证明)
用抽气机每次抽出容器内空气的60%,设容器内原有空气总量为,用抽气机抽x次后,剩余空气总量为
(1)写出关于
的函数关系式,并标明定义域;
(2)至少抽多少次后,剩余空气总量才能不超过原有总量的?
(以下数据供你参考:)
(1)求的定义域;
(2)已知,求函数
的值域。
已知.
求值:(1)(2)
设{Fn}是斐波那契数列,其中F1=F2=1,Fn= Fn–1+Fn–2(n>2),其程序框图如右图所示是表示输出斐波那契数列的前20项的算法.请根据框图写一个程序。