已知.
求值:(1) (2)
已知函数,且
在
和
处取得极值.
(1)求函数的解析式.
(2)设函数,是否存在实数
,使得曲线
与
轴有两个交点,若存在,求出
的值;若不存在,请说明理由.
(1)设椭圆:
与双曲线
:
有相同的焦点
,
是椭圆
与双曲线
的公共点,且
的周长为
,求椭圆
的方程;
我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”.
(2)如图,已知“盾圆”的方程为
.设“盾圆
”上的任意一点
到
的距离为
,
到直线
的距离为
,求证:
为定值;
(3)由抛物线弧:
(
)与第(1)小题椭圆弧
:
(
)所合成的封闭曲线为“盾圆
”.设过点
的直线与“盾圆
”交于
两点,
,
且
(
),试用
表示
;并求
的取值范围.
已知直角的三边长
,满足
(1)在之间插入2011个数,使这2013个数构成以
为首项的等差数列
,且它们的和为
,求的最小值;
(2)已知均为正整数,且
成等差数列,将满足条件的三角形的面积从小到大排成一列
,且
,求满足不等式
的所有
的值;
(3)已知成等比数列,若数列
满足
,证明:数列
中的任意连续三项为边长均可以构成直角三角形,且
是正整数.
设函数
(1)当 ,画出函数
的图像,并求出函数
的零点;
(2)设,且对任意
,
恒成立,求实数
的取值范围.
已知向量向量
与向量
的夹角为
,且
。
(1 )求向量;
(2)若向量与
共线,向量
,其中
、
为
的内角,且
、
、
依次成等差数列,求
的取值范围.