游客
题文

为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:
image.png

(Ⅰ)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);
(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为 x 1 , x 2 ,估计 x 1 - x 2 的值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分12分)甲、乙两名射击运动员参加某项有奖射击活动(射击次数相同).已知两名运动员射击的环数都稳定在7,8,9,10环,他们射击成绩的条形图如下:

(Ⅰ)求乙运动员击中8环的概率,并求甲、乙同时击中9环以上(包括9环)的概率.
(Ⅱ)甲、乙两名运动员现在要同时射击4次,如果甲、乙同时击中9环以上(包括9环)3次时,可获得总奖金两万元;如果甲、乙同时击中9环以上(包括9环)4次时,可获得总奖金五万元,其他结果不予奖励.求甲、乙两名运动员可获得总奖金数的期望值.
(注:频率可近似看作概率)

(本小题满分12分)如图,为测得河对岸某建筑物AB的高,先在河岸上选一点C,使C在建筑物底端B的正东方向上,测得点A的仰角为α,再由点C沿东偏北β(β<)角方向走d米到达位置D,测得∠BDC=γ.

(Ⅰ)若β=75°,求sⅠn∠BCD的值;
(Ⅱ)求此建筑物的高度(用字母表示).

(本小题满分14分)已知函数.
(1)若曲线处的切线为,求的值;
(2)设,证明:当时,的图象始终在的图象的下方;
(3)当时,设,(为自然对数的底数),表示导函数,求证:对于曲线上的不同两点,存在唯一的,使直线的斜率等于

(本小题满分14分)根据如图所示的程序框图,将输出a,b的值依次分别记为a1,a2, ,an, ,a2008;b1,b2, ,bn, ,b2008

(Ⅰ)求数列 { an } 的通项公式;
(Ⅱ)写出b1,b2,b3,b4,由此猜想{ bn }的通项公式,并证明你的证明;
(Ⅲ)在 ak 与 ak+1 中插入bk+1个3得到一个新数列 { cn } ,设数列 { cn }的前n项和为Sn,问是否存在这样的正整数m,使数列{ cn }的前m项的和,如果存在,求出m的值,如果不存在,请说明理由.

已知椭圆的离心率为,其左右焦点分别为,设点是椭圆上不同两点,且这两点与坐标原点的连线的斜率之积.(1)求椭圆的方程;(2)求证:为定值,并求该定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号