游客
题文

已知直线 l : a x + y = 1 在矩阵 A = 1 2 0 1 对应的变换作用下变为直线 l 1 : x + b y = 1

(I)求实数 a , b 的值
(II)若点 P ( x o , y o ) 在直线 l 上,且 A x o y o = x o y o ,求点 P 的坐标

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量的概率分布;
(3)求甲取到白球的概率.

杨辉是中国南宋末年的一位杰出的数学家、数学教育家,杨辉三角是杨辉的一大重要研究成果,它的许多性质与组合数的性质有关,杨辉三角中蕴藏了许多优美的规律.下图是一个11阶杨辉三角:

(1)求第20行中从左到右的第3个数;
(2)若第行中从左到右第13与第14个数的比为,求的值;
(3)写出第行所有数的和,写出阶(包括阶)杨辉三角中的所有数的和;
(4)在第3斜列中,前5个数依次为1,3,6,10,15;第4斜列中,第5个数为35,我们发现,事实上,一般地有这样的结论:第斜列中(从右上到左下)前个数之和,一定等于第斜列中第个数.
试用含有的数学式子表示上述结论,并证明.

甲、乙两人在罚球线投球命中的概率分别为,且各次投球相互之间没有影响.
(1)甲、乙两人在罚球线各投球一次,求这二次投球中恰好命中一次的概率;
(2)甲、乙两人在罚球线各投球二次,求这四次投球中至少有一次命中的概率.

已知直线的参数方程为,曲线的极坐标方程为
(1)将直线的参数方程化为普通方程;以极点为直角坐标系的原点,极轴为轴正半轴,建立直角坐标系,且在两种坐标系中取相同的长度单位,将曲线的极坐标方程化为直角坐标方程;
(2)若为直线上任一点,是曲线上任一点,求的最小值.

已知复数,且为纯虚数.
(1)求复数
(2)若,求复数的模

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号