设椭圆
的焦点在
轴上.
(Ⅰ)若椭圆
的焦距为1,求椭圆
的方程;
(Ⅱ)设
分别是椭圆的左、右焦点,
为椭圆
上第一象限内的点,直线
交
轴与点
,并且
,证明:当
变化时,点
在某定直线上.
已知首项为的等比数列{an}不是递减数列,其前n项和为Sn(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列.
(1)求数列{an}的通项公式;
(2)设Tn=Sn-(n∈N*),求数列{Tn}的最大项的值与最小项的值.
在数列{an}中,an+1+an=2n-44(n∈N*),a1=-23.
(1)求an;
(2)设Sn为{an}的前n项和,求Sn的最小值.
已知等差数列{an}的首项a1=1,公差d>0,且第2项、第5项、第14项分别为等比数列{bn}的第2项、第3项、第4项.
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}对n∈N*,均有+
+…+
=an+1成立,求c1+c2+c3+…+c2014的值.
已知等差数列{an}中,a5=12,a20=-18.
(1)求数列{an}的通项公式;
(2)求数列{|an|}的前n项和Sn.
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=+n-4.
(1)求证{an}为等差数列;
(2)求{an}的通项公式.