在直角坐标系 x O y 中以 O 为极点, x 轴正半轴为极轴建立坐标系.圆 C 1 ,直线 C 2 的极坐标方程分别为 ρ = 4 sin θ , ρ = cos θ - π 4 = 2 2 . (1)求 C 1 与 C 2 交点的极坐标
(2)设 P 为 C 1 的圆心, Q 为 C 1 与 C 2 交点连线的中点,已知直线 P Q 的参数方程为 x = t 3 + a y = b 2 t 3 + 1 ( t ∈ R 为参数 ) ,求 a , b 的值.
命题P:,命题Q:,若是的必要不充分条件,求实数的取值范围
.
.已知函数. (1)当时,求函数的单调区间; (2)当时,设函数,若在区间上至少存在一个,使得成立,求实数p的取值范围.
已知函数在处取得极值,且过原点,曲线在P(-1,2)处的切线的斜率是-3 (1)求的解析式; (2)若在区间上是增函数,数的取值范围; (3)若对任意,不等式恒成立,求的最小值.
已知函数是定义在上的奇函数,且 (1)确定函数的解析式; (2)判断并证明在的单调性; (3)解不等式
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号