已知复数满足为实数(为虚数单位),且,求.
已知函数. (1)若,且,求的值; (2)求函数的最小正周期及单调递增区间.
设函数. (Ⅰ)讨论函数在内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记,求函数在上的最大值D; (Ⅲ)在(Ⅱ)中,取,求满足时的最大值.
设函数,证明: (Ⅰ)对每个,存在唯一的,满足; (Ⅱ)对任意,由(Ⅰ)中构成的数列满足.
如图,已知两条抛物线和,过原点的两条直线和,与分别交于两点,与分别交于两点. (1)证明: (2)过原点作直线(异于,)与分别交于两点.记与的面积分别为与,求的值.
如图所示,在多面体,四边形,均为正方形,为的中点,过的平面交于F. (Ⅰ)证明:; (Ⅱ)求二面角余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号