设椭圆
的左焦点为
, 离心率为
, 过点
且与
轴垂直的直线被椭圆截得的线段长为
.
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设
分别为椭圆的左右顶点, 过点
且斜率为
的直线与椭圆交于
两点. 若
, 求
的值.
(本小题满分14分)已知抛物线:
与直线
相切,且知点
和直线
,若动点
在抛物线
上(除原点外),点
处的切线记为
,过点
且与直线
垂直的直线记为
.
(Ⅰ)求抛物线的方程;
(Ⅱ)求证:直线、
、
相交于同一点.
(本小题满分15分) 已知函数.
(Ⅰ)若时,函数
有三个互不相同的零点,求实数
的取值范围;
(Ⅱ)若对任意的,不等式
在
上恒成立,求实数m的取值范围.
(本小题满分15分)如图,已知的直径
,点
为
上异于
,
的一点,
平面
,且
,点
为线段
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)若,求直线
与平面
所成角的大小.
(本小题满分14分)设数列的前
项和为
,点
在直线
上.
(Ⅰ)求数列的通项公式;
(Ⅱ)在与
之间插入
个数,使这
个数组成公差为
的等差数列,求数列
的前
项和
,并求使
成立的正整数
的最大值.
已知中,
,
,
分别为角
,
,
所对的边,
.
(Ⅰ)求的值;
(Ⅱ)若的面积为
,
,求
、
的长.