(本小题满分14分)设数列的前
项和为
,点
在直线
上.
(Ⅰ)求数列的通项公式;
(Ⅱ)在与
之间插入
个数,使这
个数组成公差为
的等差数列,求数列
的前
项和
,并求使
成立的正整数
的最大值.
已知数列的前
项和为
,已知
,
.
(1)设,求证:数列
是等比数列,并写出数列
的通项公式;
(2)若对任意
都成立,求实数
的取值范围.
(本小题满分15分)
在中,角
所对的边分别为
.已知
.
(1)若.求
的面积;
(2)求的取值范围.
【选修4-5:不等式选讲】
设函数f(x)=|2x﹣1|﹣|x+2|.
(Ⅰ)解不等式f(x)>0;
(Ⅱ)若∃x0∈R,使得f(x0)+2m2<4m,求实数m的取值范围.
【选修4-4:坐标系与参数方程】
已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.
【选修4-1:几何证明选讲】
如图,在△ABC中,∠ABC=90°,以AB为直径的圆O交AC于点E,点D是BC边上的中点,连接OD交圆O与点M.
(1)求证:DE是圆O的切线;
(2)求证:DE•BC=DM•AC+DM•AB.