如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4,DC=6,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.
(1)求车架档AD的长;
(2)求车座点E到车架档AB的距离.
(结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.259,tan75°=3.732)
解不等式组,并把解集在数轴上表示出来.
已知:如图,在△ABC中,AB=AC,∠BAC=,且60°<
<120°.P为△ABC内部一点,且PC=AC,∠PCA=120°—
.
(1)用含的代数式表示∠APC,得∠APC =______;
(2)求证:∠BAP=∠PCB;
(3)求∠PBC的度数.
(1)已知:如图1,在△ABC中,D、F分别是AB、CA上的两个定点,在BC上找一点E,使△DEF的周长最小,请作出相应图形并写出作法,
(2)已知:如图2,在△ABC中,若在上一题的条件改为D是AB上一定点,在BC、 CA、上分别找一点E、F使△DEF的周长最小,请作出相应图形并写出作法
(3)已知:如图3,在△ABC中,是否存在D、E、F分别在AB、BC、CA,且
△DEF的周长最小,若存在请作出相应图形并写出作法,若不存在,请说明理由。
如图,已知AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.