如图1,在等腰梯形CDEF中,CB、DA是梯形的高,,
,现将梯形沿CB、DA折起,使
且
,得一简单组合体
如图2示,已知
分别为
的中点.
图1 图2
(1)求证:平面
;
(2)求证: ;
(3)当多长时,平面
与平面
所成的锐二面角为
?
如图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.
已知扇形的周长为20cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?
1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积.
(1)一个半径为r的扇形,若它的周长等于弧所在的半圆的长,那么扇形的圆心角是多少弧度?是多少度?扇形的面积是多少?
(2)一扇形的周长为20 cm,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?
在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:
(1)sin α≥;
(2)cos α≤﹣.