如图,在直线三棱柱ABC—A1B1C1中,AB=AC=1,∠BAC=90°,异面直线A1B与B1C1所成的角为60°.
(Ⅰ)求证:AC⊥A1B;
(Ⅱ)设D是BB1的中点,求DC1与平面A1BC1所成角的正弦值.
(本小题共13分)
已知正方形ABCD的边长为1,.将正方形ABCD沿对角线
折起,使
,得到三棱锥A—BCD,如图所示.
(I)若点M是棱AB的中点,求证:OM∥平面ACD;
(II)求证:;
(III)求二面角的余弦值.
(本小题共13分)
在中,角A、B、C的对边分别为
、
、
,角A、B、C成等差数列,
,边
的长为
.
(I)求边的长;
(II)求的面积.
已知定义在实数集上的函数,
,其导函数记为
,且满足:
,
为常数.
(Ⅰ)试求的值;
(Ⅱ)设函数与
的乘积为函数
,求
的极大值与极小值;
(Ⅲ)试讨论关于的方程
在区间
上的实数根的个数.
设MN是双曲线的弦,且MN与
轴垂直,
、
是双曲线的左、右顶点.
(Ⅰ)求直线和
的交点的轨迹C的方程;
(Ⅱ)设直线y=x-1与轨迹C交于A、B两点,若轨迹C上的点P满足
(
为坐标原点,
,
)
求证:为定值,并求出这个定值.
如图,在矩形中,
是
的中点,以
为折痕将
向上折起,使
为
,且平面
平面
.
(Ⅰ)求证:;
(Ⅱ)求直线与平面
所成角的正弦值.