(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点处,折痕为EF,若∠ABE=20°,那么
的度数为 。
(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小。
如图,在⊙O中,弦AC与BD交于点E,AB=8,AE=6,ED=4,求CD的长.
已知:二次函数的图象过点A(2,-3),且顶点坐标为C(1,-4).
(1)求此二次函数的表达式;
(2)画出此函数图象,并根据函数图象写出:当时,y的取值范围.
解方程:
如图1,对于平面上不大于的∠MON,我们给出如下定义:若点P在∠MON的内部或边界上,作PE⊥OM于点E,PF⊥ON于点F,则称PE+PF为点P相对于∠MON的“点角距离”,记为
.
如图2,在平面直角坐标系xOy中,对于,点P为第一象限内或两条坐标轴正半轴上的动点,且满足
5,点P运动形成的图形记为图形G.
(1)满足条件的其中一个点P的坐标是,图形G与坐标轴围成图形的面积等于;
(2)设图形G与x轴的公共点为点A,已知,
,求
的值;
(3)如果抛物线经过(2)中的A,B两点,点Q在A,B两点之间的抛物线上(点Q可与A,B两点重合),求当
取最大值时,点Q 的坐标.
如图,等边三角形ABC的边长为4,直线l经过点A并与AC垂直.当点P在直线l上运动到某一位置(点P不与点A重合)时,连接PC,并将△ACP绕点C按逆时针方向旋转得到△BCQ,记点P的对应点为Q,线段PA的长为m(
).
(1)①∠QBC=;
② 如图1,当点P与点B在直线AC的同侧,且时,点Q到直线l的距离等于;
(2)当旋转后的点Q恰好落在直线l上时,点P,Q的位置分别记为,
.在图2中画出此时的线段
及△
,并直接写出相应m的值;
(3)当点P与点B在直线AC的异侧,且△PAQ的面积等于时,求m的值.