在半径为4的⊙O中,点C是以AB为直径的半圆的中点,OD⊥AC,垂足为D,点E是射线AB上的任意一点,DF//AB,DF与CE相交于点F,设EF=,DF=
.
(1) 如图1,当点E在射线OB上时,求关于
的函数解析式,并写出自变量
的取值范围;
(2) 如图2,当点F在⊙O上时,求线段DF的长;
(3) 如果以点E为圆心、EF为半径的圆与⊙O相切,求线段DF的长.
已知抛物线y=+kx+b经过点P(2,-3),Q(-1,0).
(1)求抛物线的解析式.
(2)设抛物线顶点为,与
轴交点为
.求
的值.
(3)设抛物线与轴的另一个交点为
,求四边形
的面积.
已知关于x的一元二次方程x2-(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若周长为16的等腰△ABC的两边AB,AC的长是方程的两个实数根,求k的值.
如图△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.
(1)若AE=4,求EC的长;
(2)若M为BC的中点,=36,求
解方程:
(1)=0
(2).
如图,在平面直角坐标系中,O为坐标原点.△ABC的边BC在x轴上,A、C两点的坐标分别为A(0,m)、C(n,0),B(﹣5,0),且,点P从B出发,以每秒2个单位的速度沿射线BO匀速运动,设点P运动时间为t秒.
(1)求A、C两点的坐标;
(2)连接PA,用含t的代数式表示△POA的面积;
(3)当P在线段BO上运动时,是否存在一点P,使△PAC是等腰三角形?若存在,请写出满足条件的所有P点的坐标并求t的值;若不存在,请说明理由.