从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气。某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表
组别 |
观点 |
频数(人数) |
A |
大气气压低,空气不流动 |
80 |
B |
地面灰尘大,空气湿度低 |
![]() |
C |
汽车尾气排放 |
![]() |
D |
工厂造成的污染 |
120 |
E |
其他 |
60 |
请根据图表中提供的信息解答下列问题:
(1)填空: ,
,扇形统计图中E组所占的百分比为 %。
(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数
(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?
已知,AB为⊙O 的直径,点E 为弧AB 任意一点,如图,AC平分∠BAE,交⊙O于C ,过点C作CD⊥AE于D,与AB的延长线交于P.
⑴求证:PC是⊙O的切线.⑵若∠BAE=60°,求线段PB与AB的数量关系.
为了探究三角形的内切圆半径r与周长、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O是△ABC的内切圆,切点分别为点D、E、F.
(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长和面积S.(结果精确到0.1厘米)
|
AC |
BC |
AB |
r |
![]() |
S |
图甲 |
|
|
|
0.6 |
|
|
图乙 |
|
|
|
1.0 |
|
|
(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?
(3)
已知:如图,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为.求⊙O1的半径.
已知:如图,为
的直径,
交
于点
,
交
于点
.
(1)求的度数;
(2)求证:.
如图,以等腰三角形的一腰
为直径的⊙O交底边
于点
,交
于点
,连结
,并过点
作
,垂足为
.根据以上条件写出三个正确结论(除
外)是:
(1)________________;(2)________________;(3)________________.