某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片
(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;
(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;
(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.
如图,海面上一艘船由西向东航行,在 处测得正东方向上一座灯塔的最高点 的仰角为 ,再向东继续航行 到达 处,测得该灯塔的最高点 的仰角为 ,根据测得的数据,计算这座灯塔的高度 (结果取整数).
参考数据: , , .
已知 , 分别与 相切于点 , , , 为 上一点.
(Ⅰ)如图①,求 的大小;
(Ⅱ)如图②, 为 的直径, 与 相交于点 .若 ,求 的大小.
某校为了解初中学生每天在校体育活动的时间(单位: ,随机调查了该校的部分初中学生.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:
(Ⅰ)本次接受调查的初中学生人数为 ,图①中 的值为 ;
(Ⅱ)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;
(Ⅲ)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于 的学生人数.
解不等式组
请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得 ;
(Ⅱ)解不等式②,得 ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
(Ⅳ)原不等式组的解集为 .
在平面直角坐标系中,点 ,点 .已知抛物线 是常数),顶点为 .
(Ⅰ)当抛物线经过点 时,求顶点 的坐标;
(Ⅱ)若点 在 轴下方,当 时,求抛物线的解析式;
(Ⅲ)无论 取何值,该抛物线都经过定点 .当 时,求抛物线的解析式.