游客
题文

如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的横坐标是-3,点B的横坐标是1.

(1)求m、n的值;
(2)求直线PC的解析式;
(3)请探究以点A为圆心、直径为5的圆与直线PC的位置关系,并说明理由.(参考数据:≈1.41,≈1.73,≈2.24)

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理 二次函数在给定区间上的最值 一次函数的最值
登录免费查看答案和解析
相关试题

若a,b互为相反数,c,d互为倒数,=2,求的值.

画出一条数轴,在数轴上表示数,2,-(-3),,0,并把这些数用“<”连接起来.

如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽(a)”,中间的这条直线在△ABC内部的线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形的面积等于水平宽与铅垂高乘积的一半.
解答问题:
如图2,顶点为C(1,4)的抛物线y=ax2+bx+c交x轴于点A(3,0)、交y轴于点B.
(1)求抛物线和直线AB的解析式.
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA、PB.
①当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
②是否存一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.

某宾馆有客房100间,当每一间一天的定价为180元时,客房会全部租出.当定价每增加10元时,就会有5间客房空着.
(1)若某日的定价增加了20元,则这天该宾馆客房的收入为______元.
(2)若某日宾馆客房的收入为17 600元,试求这天每间客房的定价.
(3)求定价x为多少元时,客房收入y最高.

如图,AB是⊙O的弦,半径OA=20cm,∠AOB=120o.求:

(1)△OAB的面积.
(2)阴影部分的面积.(精确到1cm2

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号