如图甲,把一个边长为2的大正方形分成四个同样大小的小正方形,再连结大正方形的四边中点,得到了一个新的正方形(图中阴影部分),求:
(1)图甲中阴影部分的面积是多少?
(2)图甲中阴影部分正方形的边长是多少?
(3)如图乙,在数轴上以1个单位长度的线段为边作一个正方形,以表示数1的点为圆心,以正方形对角线长为半径画弧,交数轴负半轴于点A,求点A所表示的数是多少?
(本题6分)先看数列:1,2,4,8,…,263.从第二项起,每一项与它的前一项的比都等于2,象这样,一个数列:a1,a2,a3,…,an﹣1,an;从它的第二项起,每一项与它的前一项的比都等于一个常数q,那么这个数列就叫等比数列,q叫做等比数列的公比.
根据你的阅读,回答下列问题:
(1)请你写出一个等比数列,并说明公比是多少?
(2)请你判断下列数列是否是等比数列,并说明理由;,
,
,
,…;
(3)有一个等比数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘方的形式)
(本题6分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
日 |
增减(单位:个) |
+5 |
﹣2 |
﹣5 |
+15 |
﹣10 |
﹣6 |
﹣9 |
(1)写出该厂星期三生产工艺品的数量;
(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?
(3)请求出该工艺厂在本周实际生产工艺品的数量;
(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.
(本题5分)定义一种新运算:观察下列式:
1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;
5⊙4=5×4+4=24; 4⊙(-3)=4×4-3=13;……
(1)根据上面的规律,请你想一想:a⊙b= ;
(2)若a⊙(-2b)=6,请计算(a-b)⊙(2a+b)的值.
(本题4分)有这样一道题目:“当时,求多项式
的值”.小敏指出,题中给出的条件
,
是多余的,她的说法有道理吗?为什么?
(本题4分)画一条数轴,然后在数轴上表示下列各数:,
,
,0,并用“<”号把这些数连接起来.