如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年 年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:
方案设计:如图2,宝塔 垂直于地面,在地面上选取 , 两处分别测得 和 的度数 , , 在同一条直线上).
数据收集:通过实地测量:地面上 , 两点的距离为 , , .
问题解决:求宝塔 的高度(结果保留一位小数).
参考数据: , , , , , .
根据上述方案及数据,请你完成求解过程.
在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知 , 是弦 上一点,请你根据以下步骤完成这个引理的作图过程.
(1)尺规作图(保留作图痕迹,不写作法);
①作线段 的垂直平分线 ,分别交 于点 , 于点 ,连接 , ;
②以点 为圆心, 长为半径作弧,交 于点 , 两点不重合),连接 , , .
(2)直接写出引理的结论:线段 , 的数量关系.
先化简,再求值: ,其中 .
计算: .
已知抛物线 与 轴只有一个公共点.
(1)若抛物线过点 ,求 的最小值;
(2)已知点 , , 中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线 与抛物线交于 , 两点,点 在直线 上,且 ,过点 且与 轴垂直的直线分别交抛物线和 于点 , .求证: 与 的面积相等.