如下图,过曲线:
上一点
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,然后再过
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,
,以此类推,过点
的切线
与
轴相交于点
,再过点
作
轴的垂线交曲线
于点
(
N
).
(1) 求、
及数列
的通项公式;(2) 设曲线
与切线
及直线
所围成的图形面积为
,求
的表达式; (3) 在满足(2)的条件下, 若数列
的前
项和为
,求证:
N
.
已知侧棱垂直于底面的四棱柱,ABCD-A1B1C1D1的底面是菱形,且AD="A" A1,
点F为棱BB1的中点,点M为线段AC1的中点.
(1)求证: MF∥平面ABCD
(2)求证:平面AFC1⊥平面ACC1A1
某县为增强市民的环境保护意识,面向全县征召义务宣传志愿者,先从符合条件的志愿者中随机抽取100名按年龄分组:第1组第2组
第3组
第4组
第5组
得到的频率分布直方图如图所示,
(1)分别求第3,4,5组的频率。
(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参与广场的宣传活动,应从第3,4,5组各抽取多少名志愿者.
(3)在(2)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
设△ABC的内角A、B、C所对的边分别为a、b、c,且.
(1)求角A的大小; (2)若,求△ABC的周长L的取值范围.
设全集.
(1)解关于x的不等式;
(2)记A为(1)中不等式的解集,集合,若
恰有3个元素,求
的取值范围.
已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系,直线L的参数方程是
(t是参数).
(1)将曲线C的极坐标方程和直线L参数方程转化为普通方程;
(2)若直线L与曲线C相交于M、N两点,且,求实数m的值.