如下图,过曲线:
上一点
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,然后再过
作曲线
的切线
交
轴于点
,又过
作
轴的垂线交曲线
于点
,
,以此类推,过点
的切线
与
轴相交于点
,再过点
作
轴的垂线交曲线
于点
(
N
).
(1) 求、
及数列
的通项公式;(2) 设曲线
与切线
及直线
所围成的图形面积为
,求
的表达式; (3) 在满足(2)的条件下, 若数列
的前
项和为
,求证:
N
.
如图, 在长方体 中, 已知 .
(1) 若点 是棱 上的动点, 求三棱锥 的体积.
(2) 求直线 与平面 的夹角大小.
定义 数列 对 , 满足:
① ;
② ;
③ .
(1) 对前 4 项 的数列, 可以是 数列吗? 说明理由.
(2) 若 是 数列, 求 的值.
(3) 是否存在 , 使得存在 数列 , 对任意 , 满足 ? 若存在, 求出所有这样的 ; 若不存在, 请说明理由.
已知椭圆 过点 , 以四个顶点围成的四边形面积为 .
(1) 求椭圆 的标准方程.
(2) 过点 的直线 的斜率为 , 交椭圆 于不同的两点 , 直线 交 于点 , 若 , 求 的取值范围.
已知函数 .
(1) 若 , 求 在 处的切线方程.
(2) 若函数 在 处取得极值, 求 的单调区间, 以及最大值和最小值.
为加快新冠肺炎检测效率,某检测机构采取“ 合 1 检测法", 即将 个人的拭自样本合并检测, 若为阴性, 则可确定有样本都是阴性的; 若为阳性, 则还需要对本组的每个人再做检测. 现有 100 人, 已知其中 2 人 感染病毒.
(1) ①若采用“ 10 合 1 检测法”, 且两名感染患者在同一组, 求总检测次数.
② 已知 10 人分成一组, 分 10 组, 两名感染患者在同一组的概率为 , 定义随机变量 为总检测次数, 求检测次数 的分布列和数学期望 .
(2) 若采用“ 5 合 1 检测法”, 检测次数 的期望为 , 试比较 与 的大小(直接写出结果).