游客
题文

是定义在的可导函数,且不恒为0,记.若对定义域内的每一个,总有,则称为“阶负函数”;若对定义域内的每一个,总有
则称为“阶不减函数”(为函数的导函数).
(1)若既是“1阶负函数”,又是“1阶不减函数”,求实数的取值范围;
(2)对任给的“2阶不减函数”,如果存在常数,使得恒成立,试判断是否为“2阶负函数”?并说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

等差数列中,前三项分别为,前项和为, (1)、求;(2)、设T=,证明T<1

中,
(Ⅰ)求的值;(Ⅱ)设,求的面积.

已知,命题函数上单调递减,命题曲线轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。

(本小题满分12分)
设函数
(1)试用含a的代数式表示b,
(2)求f(x)的单调区间;
(3)令a=-1,设函数f(x)在处取得极值,记点,证明:线段MN与曲线f(x)存在异于M,N的公共点。

(本小题满分12分)
已知椭圆的离心率为,焦点到相应准线的距离为
(1)求椭圆C的方程
(2)设直线与椭圆C交于A、B两点,坐标原点到直线的距离为,求面积的最大值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号