为调查乘客的候车情况,公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中随机抽取2人作进一步的问卷调查,求抽到的两人恰好来自不同组的概率.
组别 |
候车时间 |
人数 |
一 |
![]() |
2 |
二 |
![]() |
6 |
三 |
![]() |
4 |
四 |
![]() |
2 |
五 |
![]() |
1 |
(本题满分12分)
已知函数最大值是2,最小正周期是
,
是其图象的一条对称轴,求此函数的解析式.刘文迁
(本小题共14分)函数,
,
.
(1)①试用含有的式子表示
;②求
的单调区间;
(2)对于函数图像上的不同两点,
,如果在函数图像上存在点
(其中
在
与
之间),使得点
处的切线
∥
,则称
存在“伴随切线”,当
时,又称
存在“中值伴随切线”。试问:在函数
的图像上是否存在两点
、
,使得
存在“中值伴随切线”?若存在,求出
、
的坐标;若不存在,说明理由。
(本小题满分14分)已知数列满足,
.
(1)若数列是等差数列,求
的值;
(2)当时,求数列
的前
项;
(3)若对任意,都有
成立,求
的取值范围.
((本小题满分14分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
((本小题满分14分)设集合,
,
,若
,
,
(1)求实数的取值集合.
(2)求实数的取值集合.