某校50名学生参加智力答题活动,每人回答3个问题,答对题目个数及对应人数统计结果见下表:
答对题目个数 |
0 |
1 |
2 |
3 |
人数 |
5 |
10 |
20 |
15 |
根据上表信息解答以下问题:
(Ⅰ)从50名学生中任选两人,求两人答对题目个数之和为4或5的概率;
(Ⅱ)从50名学生中任选两人,用X表示这两名学生答对题目个数之差的绝对值,求随机变量X的分布列及数学期望EX.
(本小题满分12分)设函数.
(Ⅰ)当(
为自然对数的底数)时,求
的极小值;
(Ⅱ)讨论函数零点的个数;
(Ⅲ)若对任意,
恒成立,求
取值范围.
一个暗箱里放着6个黑球、4个白球.
(1)依次取出3个球,不放回,若第1次取出的是白球,求第3次取到黑球概率;
(2)有放回地依次取出3个球,若第1次取出的是白球,求第3次取到黑球概率;
(3)有放回地依次取出3个球,求取到白球个数的分布列和期望.
为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
患病 |
未患病 |
总计 |
|
没服用药 |
20 |
30 |
50 |
服用药 |
![]() |
![]() |
50 |
总计 |
![]() |
![]() |
100 |
设从没服用药的动物中任取两只,未患病数为;从服用药物的动物中任取两只,未患病数为
,工作人员曾计算过
(1)求出列联表中数据的值;
(2)能够以99%的把握认为药物有效吗?
参考公式:,其中
;
①当K2≥3.841时有95%的把握认为、
有关联;
②当K2≥6.635时有99%的把握认为、
有关联.
由四个不同的数字1,2,4,x组成无重复数字的三位数.
(1)若x=5,其中能被5整除的共有多少个?
(2)若x=9,其中能被3整除的共有多少个?
(3)若x=0,其中的偶数共有多少个?
(4)若所有这些三位数的各位数字之和是252,求x.
某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生 |
1号 |
2号 |
3号 |
4号 |
5号 |
甲班 |
6 |
5 |
7 |
9 |
8 |
乙班 |
4 |
8 |
9 |
7 |
7 |
(1)从统计数据看,甲、乙两个班哪个班成绩更稳定(用数字特征说明);
(2)若把上表数据作为学生投篮命中率,规定两个班级的1号和2号同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和
,试求
和
的分布列和数学期望.