游客
题文

如图,四棱锥中,底面,四边形中,.
(Ⅰ)求证:平面平面
(Ⅱ)设
(ⅰ) 若直线与平面所成的角为,求线段的长;
(ⅱ) 在线段上是否存在一个点,使得点到点的距离都相等?说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

(本小题满分12分)
如图所示,正方形与直角梯形所在平面互相垂直,.

  (1)求证:平面
 (2)求四面体的体积.

如图,一个圆形游戏转盘被分成6个均匀的扇形区域.用力旋转转盘,转盘停止转动时,箭头A所指区域的数字就是每次游戏所得的分数(箭头指向两个区域的边界时重新转动),且箭头A指向每个区域的可能性都是相等的.在一次家庭抽奖的活动中,要求每个家庭派一位儿童和一位成人先后各转动一次游戏转盘,得分记为(假设儿童和成人的得分互不影响,且每个家庭只能参加一次活动).

(Ⅰ)请列出一个家庭得分的所有情况;
(Ⅱ)若游戏规定:一个家庭的总得分为参与游戏的两人所得分数之和,且总得分为偶数的家庭可以获得一份奖品.请问一个家庭获奖的概率为多少?

选修4—5:不等式选讲
设函数
(1)当a=4时,求不等式的解集
(2)若恒成立,求a的取值范围。

选修4—4:坐标系与参数方程
在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:交于A、B两点。
(1)求|AB|的长
(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离。

选修4—1:几何证明选讲
如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P。

(1)求证:PM2=PA·PC
(2)若⊙O的半径为,OA=OM求:MN的长

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号