给定椭圆: ,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,且其短轴上的一个端点到的距离为.(Ⅰ)求椭圆的方程和其“准圆”方程;(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直,并说明理由.
( 12分)已知:,(). (Ⅰ) 求关于的表达式,并求的最小正周期; (Ⅱ) 若时,的最小值为5,求的值.
( 12分)已知等差数列,, (1)求数列的通项公式 (2)设,求数列的前项和
函数,设(其中为的导函数),若曲线在不同两点、处的切线互相平行,且恒成立,求实数的最大值
(12分) 已知函数, (Ⅰ)当时,求该函数的定义域和值域; (Ⅱ)如果在区间上恒成立,求实数的取值范围.
如图,四棱锥中,⊥底面,底面为梯形,,,且,点是棱上的动点. (Ⅰ)当∥平面时,确定点在棱上的位置; (Ⅱ)在(Ⅰ)的条件下,求二面角的余弦值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号