在极坐标系中,已知圆的圆心
,半径
.
(Ⅰ)求圆的极坐标方程;
(Ⅱ)若,直线
的参数方程为
(
为参数),直线
交圆
于
两点,求弦长
的取值范围.
已知向量,
,函数
,
.
(Ⅰ)求函数的最小正周期;
(Ⅱ)在中,
分别是角
的对边,R为
外接圆的半径,且
,
,
,且
,求
的值.
已知数列中,
,
为其前n项和,且满足
。
(1)求数列的通项公式;
(2)令,求数列
的前n项和
;
(3)若,
,求证
(n∈N*)。
甲、乙两地相距s千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为,固定部分为a元。
(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,汽车应以多大速度行驶?
设是函数
的两个极值点,且
。
(1)判定函数在区间
上的单调性;
(2)求a的取值范围。
已知实数a≠b,试解关于x的不等式:。