已知是中心在坐标原点
的椭圆
的一个焦点,且椭圆
的离心率
为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设:、
为椭圆
上不同的点,直线
的斜率为
;
是满足
(
)的点,且直线
的斜率为
.
①求的值;
②若的坐标为
,求实数
的取值范围.
如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90°,BC=,求二面角S-AB-C的余弦值。
已知等腰DABC中,AC = BC = 2,ACB = 120°,DABC所在平面外的一点P到三角形三顶点的距离都等于4,求直线PC与平面ABC所成的角。
正方形ABCD中,以对角线BD为折线,把ΔABD折起,使二面角Aˊ-BD-C为60°,求二面角B-AˊC-D的余弦值
已知空间四边形ABCD中,AB =" BC" ="CD=" AD =" BD" = AC, E、F分别为AB、CD的中点,
(1)求证:EF为AB和CD的公垂线
(2)求异面直线AB和CD的距离
在60°的二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求P点到直线a的距离.