某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.
(1)求嘉淇走到十字道口 向北走的概率;
(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.
已知训练场球筐中有 、 两种品牌的乒乓球共101个,设 品牌乒乓球有 个.
(1)淇淇说:“筐里 品牌球是 品牌球的两倍.”嘉嘉根据她的说法列出了方程: .请用嘉嘉所列方程分析淇淇的说法是否正确;
(2)据工作人员透露: 品牌球比 品牌球至少多28个,试通过列不等式的方法说明 品牌球最多有几个.
某书店新进了一批图书,甲、乙两种书的进价分别为4元 本、10元 本.现购进 本甲种书和 本乙种书,共付款 元.
(1)用含 , 的代数式表示 ;
(2)若共购进 本甲种书及 本乙种书,用科学记数法表示 的值.
已知抛物线 与 轴交于 、 两点,与 轴交于 点,且点 的坐标为 、点 的坐标为 .
(1)求该抛物线的函数表达式;
(2)如图1,若该抛物线的顶点为 ,求 的面积;
(3)如图2,有两动点 、 在 的边上运动,速度均为每秒1个单位长度,它们分别从点 和点 同时出发,点 沿折线 按 方向向终点 运动,点 沿线段 按 方向向终点 运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动时间为 秒,请解答下列问题:
①当 为何值时, 的面积等于 ;
②在点 、 运动过程中,该抛物线上存在点 ,使得依次连接 、 、 、 得到的四边形 是平行四边形,请直接写出所有符合条件的点 的坐标.
如图1,在正方形 中,点 是边 上一点,且点 不与点 、 重合,点 是 的延长线上一点,且 .
(1)求证: ;
(2)如图2,连接 ,交 于点 ,过点 作 ,垂足为 ,延长 交 于点 ,连接 , .
①求证: ;
②若 ,求 的长.