我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了解析统计,制作了如下两幅不完整的统计图.
(1)李老师采取的调查方式是 (填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共
件,其中B班征集到作品 ,请把图2补充完整.
(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要在抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出解析过程)
如图,已知等边 的边长为8,点 是 边上的一个动点(与点 、 不重合).直线 是经过点 的一条直线,把 沿直线 折叠,点 的对应点是点 .
(1)如图1,当 时,若点 恰好在 边上,则 的长度为 ;
(2)如图2,当 时,若直线 ,则 的长度为 ;
(3)如图3,点 在 边上运动过程中,若直线 始终垂直于 , 的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当 时,在直线 变化过程中,求 面积的最大值.
如图,四边形 是矩形, , ,以 为一边向矩形外部作等腰直角 , .点 在线段 上,且 ,点 沿折线 运动,点 沿折线 运动(与点 不重合),在运动过程中始终保持线段 .设 与 之间的距离为 .
(1)若 .
①如图1,当点 在线段 上时,若四边形 的面积为48,则 的值为 ;
②在运动过程中,求四边形 的最大面积;
(2)如图2,若点 在线段 上时,要使四边形 的面积始终不小于50,求 的取值范围.
如图,在平行四边形 中, 平分 ,已知 , , .
(1)求证: ;
(2)求 .
只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如 .
(1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是 ;
(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
每天课外阅读时间 |
频数 |
频率 |
|
24 |
|
|
36 |
0.3 |
|
0.4 |
|
|
12 |
|
合计 |
|
1 |
根据以上信息,回答下列问题:
(1)表中 , ;
(2)请补全频数分布直方图;
(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.