游客
题文

小明合作学习小组在探究旋转、平移变换.如图△ABC,△DEF均为等腰直角三角形,各顶点坐标分别为A(1,1),B(2,2),C(2,1),D(,0),E(, 0),F().
(1)他们将△ABC绕C点按顺时针方向旋转450得到△A1B1C.请你写出点A1,B1的坐标,并判断A1C和DF的位置关系;
(2)他们将△ABC绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线上.请你求出符合条件的抛物线解析式;
(3)他们继续探究,发现将△ABC绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线上,则可求出旋转后三角形的直角顶点P的坐标.请你直接写出点P的所有坐标.

科目 数学   题型 解答题   难度 较难
知识点: 对称式和轮换对称式 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称_______,___
(2)如图,已知格点(小正方形的顶点),请你直接写出所有以格点为顶点,为勾股边且对角线相等的勾股四边形的顶点M的坐标。

(3)如图,将绕顶点按顺时针方向旋转,得到,连结.求证:,即四边形是勾股四边形.

某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。 求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?

如图,已知AB是⊙O的直径,AC是弦,CD切⊙O于点C,交AB的延长线于点D,∠ACD=120º,BD=10.

(1)求证:CA=CD;(2)求⊙O的半径.

一商店1月份的利润是2500元,3月份的利润达到3025元,这两个月的利润平均月增长的百分率是多少?

不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.
(1)试求袋中蓝球的个数.
(2)第一次任意摸一个(不放回),第二次再摸一个球,请用画树形图或表格法,求两次摸到都是白球的概率。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号