两根平行金属导轨固定倾斜放置,与水平面夹角为37°,相距d="0.5" m,a、b间接一个电阻R,R="1.5" Ω.在导轨上c、d两点处放一根质量m=0.05 kg的金属棒,bc长L="1" m,金属棒与导轨间的动摩擦因数μ=0.5.金属棒在导轨间的电阻r="0.5" Ω,金属棒被两个垂直于导轨的木桩顶住而不会下滑,如图所示.在金属导轨区域加一个垂直导轨斜向下的匀强磁场,磁场随时间的变化关系如图所示,重力加速度g=" 10" m/s2.可认为最大静摩擦力与滑动摩擦力相等,(sin37°=0.6,cos 37° =0.8).求:
(1)0~1.0 s内回路中产生的感应电动势大小;
(2)t=0时刻,金属棒所受的安培力大小;
(3)在磁场变化的全过程中,若金属棒始终没有离开木桩而上滑,则图4中t0的最大值;
(4)通过计算在图6中画出0~t0max内金属棒受到的静摩擦力随时间的变化图象.
宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种形式是三颗星位于同一直线上,两颗星围绕中央星在半径为R的同一圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的、半径为R的圆形轨道运行.设每颗星体的质量为m.
(1)试求第一种形式下星体运动的周期T1;
(2)试求第二种形式下星体运动的周期T2。
某同学研究电梯上升过程的运动规律,乘电梯上楼时他携带了一个质量为5kg的重物和一套便携式DIS实验系统,重物悬挂在力传感器上.电梯从第一层开始启动,中间不间断一直到最高层停止.在这个过程中,显示器上显示出的力随时间变化的关系如图所示.重力加速度g取10 m/s2.根据图像中的数据,求:
(1)电梯在最初加速阶段的加速度a1的大小;
(2)电梯在在19.0 s内上升的髙度H.
如图甲所示为车站使用的水平传送装置的示意图。绷紧的传送带长度L=6.0m,以v=6.0m/s的恒定速率运行,传送带的水平部分AB距离水平地面的高度h=0.45m。现有一行李箱(可视为质点)质量m=10kg,以v0=5.0m/s的水平初速度从A端滑上传送带,被传送到B端时没有被及时取下,行李箱从B端水平抛出,行李箱与传送带间的动摩擦因数(=0.20,不计空气阻力,重力加速度g取10 m/s2。试分析求解:
(1)行李箱从传送带上A端运动到B端过程中摩擦力对行李箱冲量的大小;
(2)为运送该行李箱电动机多消耗的电能;
(3)若传送带的速度v可在0~8.0m/s之间调节,仍以v0的水平初速度从A端滑上传送带,且行李箱滑到B端均能水平抛出。请你在图乙中作出行李箱从B端水平抛出到落地点的水平距离x与传送带速度v的关系图象。(要求写出作图数据的分析过程)
如图所示,一轻质弹簧竖直固定在地面上,自然长度l0=0.50m,上面连接一个质量m1=1.0kg的物体A,平衡时物体距地面h1=0.40m,此时弹簧的弹性势能EP=0.50J。在距物体A正上方高为h=0.45m处有一个质量m2=1.0kg的物体B自由下落后,与弹簧上面的物体A碰撞并立即以相同的速度运动,已知两物体不粘连,且可视为质点。g=10m/s2。求:
(1)碰撞结束瞬间两物体的速度大小;
(2)两物体一起运动第一次具有竖直向上最大速度时弹簧的长度;
(3)两物体第一次分离时物体B的速度大小。
如图所示,水平光滑轨道AB与竖直半圆形光滑轨道在B点平滑连接,AB段长x=10m,半圆形轨道半径R=2.5m。质量m=0.10kg的小滑块(可视为质点)在水平恒力F作用下,从A点由静止开始运动,经B点时撤去力F,小滑块进入半圆形轨道,沿轨道运动到最高点C,从C点水平飞出。重力加速度g取10m/s2。若小滑块从C点水平飞出后又恰好落在A点。试分析求解:
(1)滑块通过C点时的速度大小;
(2)滑块刚进入半圆形轨道时,在B点对轨道的压力大小;
(3)水平力F 的大小。