如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.
在Rt△ABC中,∠C是直角,∠A、∠B、∠C的对边分别是a、b、c,且a=24,c=25,求sinA、cosA、tanA、sinB、cosB、tanB的值.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低x元。
(1)填表(不需化简)
时间 |
第一个月 |
第二个月 |
清仓时 |
单价(元) |
80 |
40 |
|
销售量(件) |
200 |
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
已知一元二次方程x2-2x+m=0
(1)如果方程有两个实数根,求m的取值范围。
(2)若方程的两个实数根为a、b,且,求m的值。
如图△ABC中,AB=AC,∠A=120°
(1)用直尺和圆规作AB的垂直平分线,分别交BC,AB于点M,N(保留痕迹,不写作法)
(2)猜想CM与BM有何数量关系,并证明你的猜想。
已知如图AD为△ABC上的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD
求证:BE⊥AC