请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容。图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2)。线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1。求出点M的坐标并证明你的结论。
解:M( , )
证明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM= 度。
∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC( ),∠BDM=∠BMD(同理),
∴∠ACM= (180°- ) =45°。 ∠BDM=45°(同理)。
∴∠ACM=∠BDM。
在△ACM与△BDM中,,
∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。
如图,已知直线y=-x+3 分别与x、y轴交于点A和B.
(1)求点A、B的坐标;
(2)求原点O到直线l的距离;
(3)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M的坐标.
已知O为坐标原点,抛物线与
轴相交于点
,
.与
轴交于点C,且O,C两点之间的距离为3,
,
,点A,C在直线
上.
(1)求点C的坐标;
(2)当随着
的增大而增大时,求自变量
的取值范围;
(3)将抛物线向左平移
个单位,记平移后
随着
的增大而增大的部分为P,直线
向下平移n个单位,当平移后的直线与P有公共点时,求
的最小值.
已知反比例函数的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并求的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于轴对称,若
的面积为6,求
的值.
如图,过原点的直线和
与反比例函数
的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.
(1)四边形ABCD一定是 四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时和
之间的关系式;若不可能,说明理由;
(3)设P(,
),Q(
,
)(
)是函数
图象上的任意两点,
,
,试判断
,
的大小关系,并说明理由.
如图,直线经过点A(4,0),B(0,3).
(1)求直线的函数表达式;
(2)若圆M的半径为2,圆心M在轴上,当圆M与直线
相切时,求点M的坐标.