如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)
(1)填空:用含t的代数式表示点A的坐标及k的值:A ,k= ;
(2)随着三角板的滑动,当a=时:
①请你验证:抛物线的顶点在函数
的图象上;
②当三角板滑至点E为AB的中点时,求t的值;
(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.
计算:0.25×()﹣2+(3.14﹣π)0﹣2sin60°.
先化简再求值:,其中x=tan60°﹣1.
如图,等腰Rt△ABC,AC=BC,以斜边AB中点O为圆心作⊙O与AC边相切于点D,交AB于点E,连接DE.
(1)求证:BC为⊙O的切线;
(2)求tan∠CDE的值.
如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(﹣2,0).
(1)试说明△ABC是等腰三角形;
(2)动点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t秒时,△MON的面积为S.
①求S与t的函数关系式;
②设点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在请说明理由;
③在运动过程中,当△MON为直角三角形时,求t的值.
直线分别与x,y轴交点为C,A,BC=AC,AE平分∠CAO,OD平分∠AOC交AE于点D,连接BD交y轴于点F,点P从点B出发沿线段BC匀速运动,速度为5单位/秒,同时点Q从点C出发沿线段CA匀速运动,速度为5单位/秒,设点P,Q的运动时间为t秒.
(1)求线段BE的长.
(2)若△PEQ的面积为S,在点P,Q的运动过程中,求S与t的函数关系式,直接写出自变量t的取值范围.