游客
题文

如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,二次函数的图象经过点A,B,与x轴分别交于点E,F,且点E的坐标为(,0),以OC为直径作半圆,圆心为D.

(1)求二次函数的解析式;
(2)求证:直线BE是⊙D的切线;
(3)若直线BE与抛物线的对称轴交点为P,M是线段CB上的一个动点(点M与点B,C不重合),过点M作MN∥BE交x轴与点N,连结PM,PN,设CM的长为t,△PMN的面积为S,求S与t的函数关系式,并写出自变量t的取值范围.S是否存在着最大值?若存在,求出最大值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,点A坐标为(-1,1),将此小船向左平移2个单位后,画出图形,并指出A,B,C,D各点坐标.

夏令营组织学员到某一景区游玩,老师交给同学一张画有直角坐标系和标有A、B、C、D 四个景点位置的地图,指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与景点A、C和景点B、D所在的两条直线等距离;②到B、C两景点等距离。请你在平面直角坐标系中,画出景点E的位置,并标明坐标(用整数表示)。

如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OPn(n为正整数)

(1)求点P6的坐标;
(2)求△P5OP6的面积;
(3)我们规定:把点Pn(xn,yn)(n=0,1,2,3…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Pn的“绝对坐标”.根据图中点Pn的分布规律,请你猜想点Pn的“绝对坐标”,并写出来

随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.
(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案

已知用含的代数式表示.甲、乙两位同学跑上讲台,板书了下面两种解法:
同学甲解:
同学乙解:
因为
.
老师看罢,提出下面的问题:
(1)两位同学的解法都正确吗?为什么?
(2)请你再给出一种不同于甲、乙二人的解法

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号