如图,已知切⊙
于点E,割线PBA交⊙
于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.
求证:(Ⅰ); (Ⅱ)
.
为了了解青少年视力情况,某市从高考体检中随机抽取16名学生的视力进行调查,经医生用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(1)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(2)以这16人的样本数据来估计该市所有参加高考学生的的总体数据,若从该市参加高考的学生中任选3人,记表示抽到“好视力”学生的人数,求
的分布列及数学期望.
已知曲线C的极坐标方程为.
(1)若直线过原点,且被曲线C截得弦长最短,求此时直线
的标准形式的参数方程;
(2)是曲线C上的动点,求
的最大值.
已知函数
(1).求的周期和单调递增区间;
(2).若关于x的方程在
上有解,求实数m的取值范围.
已知全集U=R,集合,函数
的定义域为集合B.
(1)若时,求集合
;
(2)命题P: ,命题q:
,若q是p的必要条件,求实数a的取值范围.
已知为坐标原点,
=(
),
=(1,
),
.
(1)若的定义域为[-
,
],求y=
的单调递增区间;
(2)若的定义域为[
,
],值域为[2,5],求
的值.