游客
题文

如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB,如图2所示,量得连杆OA长为10cm,雨刮杆AB长为48cm,∠OAB=1200.若启动一次刮雨器,雨刮杆AB正好扫到水平线CD的位置,如图3所示.

(1)求雨刮杆AB旋转的最大角度及O、B两点之间的距离;(结果精确到0.01)
(2)求雨刮杆AB扫过的最大面积.(结果保留π的整数倍)
(参考数据:sin60°=,cos60°=,tan60°=≈26.851,可使用科学计算器)

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理 解直角三角形
登录免费查看答案和解析
相关试题

解不等式组并把解集在数轴上表示出来.

计算:.

已知:把按如图(1)摆放(点与点重合),点)、在同一条直线上..如图(2),从图(1)的位置出发,以的速度沿匀速移动,在移动的同时,点的顶点出发,以2 cm/s的速度沿向点匀速移动.当的顶点移动到边上时,停止移动,点也随之停止移动.相交于点,连接,设移动时间为

(1)当为何值时,点在线段的垂直平分线上?
(2)连接,设四边形的面积为,求之间的函数关系式;是否存在某一时刻,使面积最小?若存在,求出的最小值;若不存在,说明理由.
(3)是否存在某一时刻,使三点在同一条直线上?若存在,求出此时的值;若不存在,说明理由.(图(3)供同学们做题使用)

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是时, 为直角三角形.

如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点FAC的延长线上,且AC=CF,∠CBF=∠CFB

(1)求证:直线BF是⊙O的切线;
(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长和扇形DOE的面积;
(3)在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号