现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为
,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(I)求该射手恰好命中两次的概率;
(II)求该射手的总得分的分布列及数学期望
;
.已知函数的极大值点为
.
(1)用实数来表示实数
,并求
的取值范围;
(2)当时,
的最小值为
,求
的值;
(3)设,
两点的连线斜率为
.求证:必存在
,使
.
已知抛物线C:过点
。
(1)求抛物线的方程;
(2)是否存在平行于OA(O为原点)的直线L,与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由。
已知函数的图象经过点M(1,4),曲线在点M处的切线恰好与直线
垂直,
(1)求实数a、b的值;
(2)若函数在区间[m,m+1]上单调递增,求m的取值范围.
.已知,设p:函数
在R上单调递减;命题q:方程
表示的曲线是双曲线,如果“p
q”为真,“p
q”为假,求
的取值范围.
一个包装箱内有5件产品,其中3件正品,2件次品。现随机抽出两件产品,
(1)求恰好有一件次品的概率。
(2)求都是正品的概率。
(3)求抽到次品的概率。