游客
题文

一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.
(Ⅰ)从袋子中摸出3个球,求摸出的球为2个红球和1个白球的概率;
(Ⅱ)从袋子中摸出两个球,其中白球的个数为,求的分布列和数学期望.

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)求函数的极值.

某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.




6
9
3 6 7 9 9
9 5 1 0
8
0 1 5 6
9 9 4 4 2
7
3 4 5 8 8 8
8 8 5 1 1 0
6
0 7 7
4 3 3 2
5
2 5


(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.


甲班(A方式)
乙班(B方式)
总计
成绩优秀



成绩不优秀



总计




附:,其中n=a+b+c+d.)

P(K2≥k)
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
k
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:

x
2
4
5
6
8
y
30
40
60
50
70


(1)画出散点图;
(2)求y关于x的线性回归方程.
可能用到公式

已知曲线C(t为参数), C为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。

已知函数
(1)讨论的单调性.
(2)证明:,e为自然对数的底数)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号