某工厂在试验阶段大量生产一种零件.这种零件有、
两项技术指标需要检测,设各项技术指标达标与否互不影响.若有且仅有一项技术指标达标的概率为
,至少一项技术指标达标的概率为
.按质量检验规定:两项技术指标都达标的零件为合格品.
(1) 求一个零件经过检测为合格品的概率是多少?
(2) 任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
(本小题满分14分)
椭圆过点P
,且离心率为
,F为椭圆的右焦点,
、
两点在椭圆
上,且
,定点
(-4,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)当时 ,问:MN与AF是否垂直;并证明你的结论.
(Ⅲ)当、
两点在
上运动,且
=6
时
, 求直线MN的方程.
已知函数,
,
(Ⅰ)当时,若
在
上单调递增,求
的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当
是整数时,存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在
,且
上的函数
,使当
时,
,当
时,
取得最大值的自变量的值构成以
为首项的等差数列。
已知:函数的最大值为
,最小正周期为
.
(Ⅰ)求:的解析式;
(Ⅱ)若的三条边为
,
,
,满足
,
边所对的角为
.求:角
的取值范围及函数
的值域.
已知集合,
(Ⅰ)当时,求
;
(Ⅱ)求使的实数
的取值范围。
已知函数的图象过坐标原点O,且在点
处的切线的斜率是
5.
(1)求实数的值;
(2)求在区间
上的最大值;