抛物线M: 的准线过椭圆N:
的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.
(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.
已知a>0,函数.
⑴设曲线在点(1,f(1))处的切线为
,若
截圆
的弦长为2,求a;
⑵求函数f(x)的单调区间;
⑶求函数f(x)在[0,1]上的最小值.
一条斜率为1的直线与离心率e=
的椭圆C:
交于P、Q两点,直线
与y轴交于点R,且
,求直线
和椭圆C的方程;
已知函数的导函数
,数列{
}的前n项和为
,点
(n,
)均在函数
的图象上.若
=
(
+3)
⑴当n≥2时,试比较与
的大小;
⑵记试证
如图,椭圆C:焦点在
轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线
上一点P.
⑴求椭圆C及抛物线C1、C2的方程;
⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(
,0),求
的最小值.
已知数列,
满足a1=2,2an=1+anan+1,bn=an-1, bn≠0
⑴求证数列是等差数列,并求数列
的通项公式;
⑵令Tn为数列
的前n项和,求证:Tn<2