如图,椭圆C:焦点在
轴上,左、右顶点分别为A1、A,上顶点为B.抛物线C1、C:分别以A、B为焦点,其顶点均为坐标原点O,C1与C2相交于直线
上一点P.
⑴求椭圆C及抛物线C1、C2的方程;
⑵若动直线与直线OP垂直,且与椭圆C交于不同两点M、N,已知点Q(
,0),求
的最小值.
某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)是他
们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣
越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含
个小正方形.
(Ⅰ)求出的值;
(Ⅱ)利用合情推理的“归纳推理思想”,归纳出与
之间的关系式,并根据你得到的关系式求出
的表达式;
(Ⅲ)求的值.
已知函数在
与
时都取得极值.
(1)求的值与函数
的单调区间
(2)若对,不等式
恒成立,求
的取值范围。
已知在
时有极值0。
(1)求常数 的值;
(2)求的单调区间。
(3)方程在区间[-4,0]上有三个不同的实根时实数
的范围。
已知曲线 y = x3 + x-2 在点 P0 处的切线 与直线4x-y-1=0平行,且点 P0 在第三象限,
(1)求P0的坐标;
(2)若直线 , 且 l 也过切点P0 ,求直线l的方程.
已知复数试求当a为何值时,Z为(1)实数,(2)虚数,(3)纯虚数。