已知椭圆:
,
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线
与椭圆
交于不同的两点
,且
为锐角(
为坐标原点),求直线
的斜率
的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆
:
相交于
四点,设原点
到四边形
的一边距离为
,试求
时
满足的条件.
如图,某中学甲、乙两班共有25名学生报名参加了一项测试.这25位学生的考分编成的茎叶图,其中有一个数据因电脑操作员不小心删掉了(这里暂用x来表示),但他清楚地记得两班学生成绩的中位数相同.
(1)求这两个班学生成绩的中位数及x的值;
(2)如果将这些成绩分为“优秀”(得分在175分以上,包括175分)和“过关”,若学校再从这两个班获得“优秀”成绩的考生中选出3名代表学校参加比赛,求这3人中甲班至多有一人入选的概率.
已知
(1)化简;
(2)若是第三象限角,且cos(
)=
,求
的值.
已知函数.
(1)当时,求不等式
的解集;
(2)若不等式存在实数解,求实数
的取值范围.
在平面直角坐标系中,曲线
的参数方程为
,(其中
为参数,
),在极坐标系(以坐标原点
为极点,以
轴非负半轴为极轴)中,曲线
的极坐标方程为
.
(1)把曲线和
的方程化为直角坐标方程;
(2)若曲线上恰有三个点到曲线
的距离为
,求曲线
的直角坐标方程.
如图,半圆的直径
的长为4,点
平分弧
,过
作
的垂线交
于
,交
于
.
(1)求证::
(2)若是
的角平分线,求
的长.